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Abstract
"Why Go Spectral? Harnessing Spectral Pricing Rules in Strategic Portfolio 
Management" delves into the advantages of using spectral (SRM) pricing rules 
in insurance pricing and planning. Tailored for actuaries engaged in capital 
modeling, individual risk, reinsurance, and strategic planning, this presentation 
illustrates how SRM rules not only generalize traditional methods like CoXTVaR
but also effectively address their limitations. Instead of prescribing a single 
solution, SRM methods offer a spectrum of results, each tailored to different risk 
appetites. Illustrated with a compelling case study, it demonstrates SRM’s utility 
in problems such as diversifying risk pricing and reinsurance evaluation. 
Readers will acquire the expertise to implement SRM in their work the ability to 
explain its results to business stakeholders. Incorporate SRM rules in your 
pricing work to align more closely with your organization's risk appetite and 
strategic goals!
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Introduction to SRM Pricing 
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Spectral (SRM) Pricing: Overview 
 SRM pricing uses a distortion function to add a risk load
 Distortion functions make bad outcomes more likely and good ones less, 

resulting in a positive loading
 Distortions express a risk appetite
 Portfolio SRM premium has a natural allocation to individual units
 Many existing methods, including CoXTVaR, are special cases of SRMs

 Different distortions can produce same total portfolio pricing but have 
materially different natural allocations to units, reflecting distinct risk appetites
 Different allocations, in turn, drive materially different business decisions  

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Spectral (SRM) Pricing: Distortion Functions 
 A distortion function 𝑔𝑔 maps a probability to a larger probability, and is used 

to fatten the tail. The distortion function must be 
– Increasing,
– Concave (decreasing derivative), and
– Map 0 to 0 and 1 to 1
 𝑔𝑔 𝑠𝑠 can be understood as the price for a binary risk paying 1 with probability 

s and zero otherwise 

 𝑆𝑆 𝑥𝑥 = Pr 𝑋𝑋 > 𝑥𝑥 , is the survival function of a random variable 𝑋𝑋
– Loss cost 𝖤𝖤 𝑋𝑋 = ∫𝑆𝑆 𝑥𝑥 𝑑𝑑𝑥𝑥

 𝑔𝑔 𝑆𝑆 𝑥𝑥 > 𝑆𝑆 𝑥𝑥 , is the risk-adjusted survival function

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Distortion Functions and Insurance Statistics

Graphic: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Spectral (SRM) Pricing Rules 
 The spectral (SRM) pricing rule associated with a distortion 𝑔𝑔 is given by

𝜌𝜌 𝑋𝑋 = �𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑥𝑥

interpreted as price, technical premium, risk-adjusted loss cost, or risk measure

 Integration by parts trick gives the alternative expression

𝜌𝜌 𝑋𝑋 = �𝑥𝑥 𝑔𝑔′ 𝑆𝑆 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝖤𝖤 𝑋𝑋𝑔𝑔′ 𝑆𝑆 𝑋𝑋

which makes the spectral risk adjustment 𝑔𝑔′ 𝑆𝑆 𝑋𝑋 explicit

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Spectral Pricing Rules Have Nice Properties 
a) Monotone: Uniformly higher risk implies higher price

b) Sub-additive: diversification decreases price

c) Comonotonic additive: no credit when no diversification; if out-comes 
imply same event order, then prices add 

d) Law invariant: Price depends only on the distribution 

All risk measures with these properties are SRM rules 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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SRM Pricing Adds Up Pricing by Layer

Graphic: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley

Low asset layer: 
margin low % EL

but high % capital; 
very high leverage

High asset layer: 
margin high % EL

but low % capital;
very low leverage
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SRM Pricing has a Natural Allocation to Subunits
 If 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖, define the natural allocation to unit 𝑖𝑖 as

𝖭𝖭𝖭𝖭 𝑋𝑋𝑖𝑖 = 𝖤𝖤 𝑋𝑋𝑖𝑖 𝑔𝑔′ 𝑆𝑆 𝑋𝑋

 Example: 𝑔𝑔 𝑠𝑠 = min 1, 𝑠𝑠/ 1 − 𝑝𝑝 corresponds to TVaR
– 𝜌𝜌 𝑋𝑋 = 𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝑝𝑝 𝑋𝑋
–𝖭𝖭𝖭𝖭 𝑋𝑋𝑖𝑖 = 𝖢𝖢𝖢𝖢𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝑝𝑝 𝑋𝑋𝑖𝑖

 The natural allocation pricing has nice properties
– It is natural because it involves no additional assumptions
– It adds-up because the sum of natural allocations is the original SRM price 
– It equals marginal pricing when marginal pricing is well defined 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Portfolio Pricing
 General portfolio pricing rule

Premium = expected loss + cost of capital

 Cost of capital expressed in dollars, and averages
– Use of different forms of capital, equity, debt, reinsurance
– Each with different costs 

 Price excluding expenses, investment income, etc. 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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CCoC Portfolio Pricing
 Constant cost of capital (CCoC) is a common default 

assumption
– Constant across lines of business 
– Constant across layers of capital (debt, equity,

reinsurance, etc.)

 The CCoC of capital 𝑟𝑟 has various names: target 
return on capital, WACC, opportunity cost of capital

 CCoC Portfolio pricing rule
Premium = expected loss + 𝑟𝑟 × (amount of capital)

“Heck, we know it 
doesn’t make sense, 

but let’s do it anyway.”

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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CCoC Critique
Capital use and capital cost vary by layer
 Different costs manifest in WACC calculation! 
 Capital allocation methods assume all capital has the same cost
 𝑟𝑟 × capital 

= (Avg cost of capital across layers) × (Avg use of capital across layers)
≠ Average[(cost of capital by layer) × (use of capital by layer)]

 Compare 𝖤𝖤 𝑋𝑋𝑋𝑋 ≠ 𝖤𝖤 𝑋𝑋 𝖤𝖤 𝑋𝑋 unless 𝑋𝑋, 𝑋𝑋 are uncorrelated

Cost and use are correlated because higher layers are bigger and cheaper, 
and cat exposed lines use higher layers disproportionately

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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CCoC Portfolio Pricing with an XTVaR Capital Standard 
 CCoC implementation with XTVaR capital:

𝑃𝑃 𝑋𝑋 = 𝖤𝖤 𝑋𝑋 + 𝑟𝑟 𝖷𝖷𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝑝𝑝 𝑋𝑋 = 1 − 𝑟𝑟 𝖤𝖤 𝑋𝑋 + 𝑟𝑟 𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝑝𝑝 𝑋𝑋

 Rule is a special case of SRM pricing
 Corresponding distortion is

𝑔𝑔 𝑠𝑠 = 1 − 𝑟𝑟 𝑠𝑠 + 𝑟𝑟𝑟𝑟𝑟 1, 𝑠𝑠/ 1 − 𝑝𝑝
– Weight 1 − 𝑟𝑟 applied to all events: risk neutral part
– Weight 𝑟𝑟 applied to 𝑝𝑝-tail events: extremely risk averse
– An average of two TVaRs, since 𝖤𝖤 𝑋𝑋 = 𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳0 𝑋𝑋
 Easy to check that 𝜌𝜌 𝑋𝑋 = 1 − 𝑟𝑟 𝖤𝖤 𝑋𝑋 + 𝑟𝑟𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝑝𝑝 𝑋𝑋 because integrals are 

linear

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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XTVaR Natural Allocation
 Corresponding natural allocation is simply CoXTVaR pricing

𝖭𝖭𝖭𝖭 𝑋𝑋𝑖𝑖 = 1 − 𝑟𝑟 𝖤𝖤 𝑋𝑋𝑖𝑖 + 𝑟𝑟 𝖢𝖢𝖢𝖢𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳 𝑋𝑋𝑖𝑖 = 𝖤𝖤 𝑋𝑋𝑖𝑖 + 𝑟𝑟 𝖢𝖢𝖢𝖢𝖷𝖷𝖳𝖳𝖳𝖳𝖳𝖳𝖳𝖳 𝑋𝑋𝑖𝑖

 Shows SRM approach generalizes existing methods

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Obvious Question: What about using other distortions?

1. What other distortions are available?

2. How can different distortions be interpreted?

3. Do business implications vary materially by distortion?

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Obvious Question: What about using other distortions?

1. What other distortions are available?

2. How can different distortions be interpreted?

3. Do business implications vary materially by distortion?

Many others available

They encode risk appetite

Yes!

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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1. What other distortions are available?
Five usual suspect distortions
 CCoC: 𝑔𝑔 𝑠𝑠 = 𝑑𝑑 + 𝑣𝑣𝑠𝑠 for 𝑠𝑠 > 0 and 𝑔𝑔 0 = 0 where 𝑑𝑑 = 1/ 1 + 𝑟𝑟 , 𝑣𝑣 = 1 − 𝑑𝑑

are discount rates related to the cost of capital, note 𝑑𝑑/𝑣𝑣 = 𝑟𝑟
 PH proportional hazard: 𝑔𝑔 𝑠𝑠 = 𝑠𝑠𝛼𝛼 , 0 ≤ 𝛼𝛼 ≤ 1
 Wang: 𝑔𝑔 𝑠𝑠 = 𝛷𝛷 𝛷𝛷−1 𝑠𝑠 + 𝜆𝜆

 Dual: 𝑔𝑔 𝑠𝑠 = 1 − 1 − 𝑠𝑠 𝛽𝛽 , 𝛽𝛽 ≥ 1

 TVaR: 𝑔𝑔 𝑠𝑠 = min 1, 𝑠𝑠/ 1 − 𝑝𝑝

 All one-parameter distortions, easy to calibrate to given portfolio pricing 
 Many others available, but these five provide a sample good range
 See PIR §11.3 for more details  

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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A word about TVaR as a pricing rule
 TVaR usually a risk measure, with 𝑝𝑝 close to 1

 TVaR can be used as a pricing rule, with 𝑝𝑝 commonly between 20% and 60%
– Rule: simply average worst 40-80% of outcomes

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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2. How can different distortions be interpreted?
Distortion functions 
encode risk appetite
 Distortion prices a binary 

(all or nothing) event with 
probability 𝑠𝑠 of occurring

Statistic Risk appetite interpretations

Premium Price for small s corresponds to tail risk. Mass at 
zero implies minimum premium.

Loss ratio Minimum premium implies loss ratio goes to 0 
for small s
Loss ratio increases to 1 for small (attritional) 
losses, s=1.

Margin Symmetric about s=1/2? 
Skewed left  tail-centric
Skewed right  volatility-centric

Return on capital Bounded or unbounded for equity, on right?

VaR weight Where is breakeven point, weight=1? Are all 
VaRs weighted? Is max weighted?  

TVaR weight Masses? Weights 0 or 1 or other values? 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Dual Distortion Insurance Statistics

Premium Loss Ratio Margin Return VaR weight TVaR weight

Premium by layer

Graph of g

Diagonal shows 
loss cost

Loss / Premium

Look for 
minimum LR > 0 
vs. LR tending to 
zero (more tail 
risk averse)

Premium – Loss

Dollar value 

Look for
symmetry & 
location of peak

Return on capital, 
where capital 
equals 1 – premium 

Look for cost of 
equity on the right 

All SRMs are 
weighted averages 
of VaRs.

Look for breakeven 
between over and 
underweighting. 

All SRMs are 
weighted averages 
of TVaRs. This 
graph shows the 
weights assigned 
each component.

Look for wts to 
mean and max. 

Next slide shows same graphs for Usual Suspects compared to dual 
shown here; all calibrated to same pricing on a gross portfolio

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Calibrated Distortions 
 For a given portfolio, calibrate the usual suspect distortions to overall portfolio 

pricing and compare natural allocation premiums 

 Following slide compares calibrated distortions for a Toy Model 
– CCoC at 15%, proportional hazard exponent 0.72, Wang shift 0.343, 

dual exponent 1.595, TVaR p=0.271
– Shown compared to dual

 Next section implements this approach in detail

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Simple Example / Toy Model

1. Setup and Assumptions

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1


25Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 International

Ins Co. t = 1 Cash Flows

 Cash flows from insurer to four different counter-
parties at t = 1, show all business written
 Ten equally likely scenarios, 0-9, represent all 

possible outcomes
 Ignore investment income, taxes, expenses etc.
 X1 = non-cat insurance
 X2 = cat insurance 
 X3 = equity (residual)
 X4 = 35 xs 65 agg stop, return of collateral
What is target premium at t = 0 to pay 
each cash flow?

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Cash Flow Summary Statistics 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1


27Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 International

Simple Example / Toy Model

2. Natural Allocations for Dual Distortion

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Algorithm for (Linear) Natural Allocation
1. Compute unit average loss grouped by total loss & sum group probabilities
2. Sort by ascending total loss (all values now distinct)
3. Compute survival function S
4. Apply distortion function g(S)
5. Difference step 4 to compute risk adjusted probabilities Q
6. Compute sum-products by unit and in total with respect to Q to obtain SRM 

pricing and natural allocation pricing by unit 

 Step 1 replaces Xi with the conditional expectation E[Xi | X], a random variable 
defined by E[Xi | X](ω) = E[Xi | X=X(ω)]

 See PIR Algorithms 11.1.1 p.271 and 15.1.1, p.397 for more detail

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Spectral ask price for insurance cash flows X1, X2

 Collapse outcomes by value 
of X and sort
 S(x) = Pr(X > x)

Scenario X1 X2 X P S(X)  
3 22 0 22 0.1 0.9
2 28 0 28 0.1 0.8
0 36 0 36 0.1 0.7

1,4,5,6 34 6 40 0.4 0.3
7 45 10 55 0.1 0.2
8 25 40 65 0.1 0.1
9 25 75 100 0.1 0

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Spectral ask price for insurance cash flows X1, X2

 Collapse outcomes by value 
of X and sort
 S(x) = Pr(X > x)
 Select dual distortion

g(s) = 1 − (1 − s)1.59515

 Calibrated to 15% return 
with assets a = 100
 No default
 Z = Q / P

Scenario X1 X2 X P S(X) g(S) Q=diff g(S)
3 22 0 22 0.1 0.9 0.974599 0.025401
2 28 0 28 0.1 0.8 0.923257 0.051342
0 36 0 36 0.1 0.7 0.853469 0.069788

1,4,5,6 34 6 40 0.4 0.3 0.433881 0.419588
7 45 10 55 0.1 0.2 0.299491 0.13439
8 25 40 65 0.1 0.1 0.154702 0.144789
9 25 75 100 0.1 0 0 0.154702
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Spectral ask price for insurance cash flows X1, X2

 Collapse outcomes by value 
of X and sort
 S(x) = Pr(X > x)
 Select dual distortion

g(s) = 1 − (1 − s)1.59515

 Calibrated to 15% return 
with assets a = 100
 No default
 Z = Q / P

Scenario X1 X2 X P S(X) g(S) Q=diff g(S)
3 22 0 22 0.1 0.9 0.974599 0.025401
2 28 0 28 0.1 0.8 0.923257 0.051342
0 36 0 36 0.1 0.7 0.853469 0.069788

1,4,5,6 34 6 40 0.4 0.3 0.433881 0.419588
7 45 10 55 0.1 0.2 0.299491 0.13439
8 25 40 65 0.1 0.1 0.154702 0.144789
9 25 75 100 0.1 0 0 0.154702

EP 31.7 14.9 46.6
EQ 32.31 21.256 53.565
LR 0.9811 0.701 0.87

 Overall loss ratio is 87.0% (market assumption)
 Non-cat ask price 98.1% loss ratio (no expenses)
 Cat ask price 70.1% loss ratio

EP = loss cost
EQ = risk-loaded premium 
Sum-products with P and Q columns

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Spectral calculations with financing cash flows X3, X4

 Descending sort order, but same Q
 Expected value of t = 1 flow (EP)
 Price is minimum acceptable bid at t = 

0 for cash flows made at t = 1 (EQ)
 Price column also equals minZ E[Xi Z]
 Return = Expected value / Price – 1
 Achieves 15% overall target return
 Implied ceded loss ratio: 64.6%

Scenario X3 X4 Financing
3 43 35 78
2 37 35 72
0 29 35 64

1,4,5,6 25 35 60
7 10 35 45
8 0 35 35
9 0 0 0

Expected 21.9 31.5 53.4
Price 16.84935 29.58543 46.43478
Return 0.299753 0.064713 0.15

 Overall target return 15% (market)
 X3 equity has 30% target return
 X4 agg stop cat bond, a 6.5% return 

Financing distinct 
from asset risk!

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Simple Example / Toy Model

3. Natural Allocations for Usual Suspects

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Calibrate g to 15% return: five usual suspect distortions

 CCoC is most sensitive to tail risk and more expensive for X2, cat loss, and greatest benefit from 
reinsurance X4

 TVaR is most sensitive to body risk (volatility) and more expensive for X1, non-cat, sees less 
benefit in reinsurance, and has a higher cost of equity capital X3

 Other distortions blend between these two

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Calibrate g to 15% return: five usual suspect distortions

 CCoC: negative margin for non-cat 
unit X1, cat unit X2 very expensive
 TVaR: more balanced, positive 

margins for both lines 

 X4 cat cover value declines with 
distortion body-centricity
 X3 cost of equity increases with 

distortion body-centricity 

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Simple Example / Toy Model

4. Applications and Implications

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Application 1: Diversifying Cat Risk
 Line X1 like a diversifying cat risk

 Target combined ratios by distortion 
vary materially

 Tail-centric distortions write at 
underwriting loss – see next section 

 Highlights importance of selecting 
distortion to match risk appetite 

A diversifying cat is a catastrophe risk from a non-
peak peril, such as Chile, Australia or New Zealand.

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Application 2: Reinsurance Decision Making 
 Target cost of equity capital X3 reflects 

greater aversion to earnings volatility 
from CCoC down to TVaR

 Break even ceded loss ratio varies from 
46.0% (CCoC, tail-risk averse) to 
72.9% (TVaR, volatility averse, less 
concerned with tail risk) 

 Range of loss ratios brackets typical 
market pricing, showing choice of 
distortion material to decision 
making 
 5-point swing in net loss ratio targets

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Why the Natural Allocation 
Can Produce 
Negative Margins

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Bounds for the Natural Allocation
 NA(Xi) lies between standalone 

prices ρ(Xi) and –ρ(–Xi)

 NA(Xi) = ρ(Xi) if Xi is comonotonic 
with X
– no diversification benefit
– pure insurance risk

 NA(Xi) = –ρ(–Xi) if Xi is anti-
comonotonic, 
– –Xi is comonotonic with X
– pure financing risk

–ρ(–Xi)              E[Xi]                    ρ(Xi)

         financing            insurance               

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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The Switcheroo: can exchange Xi for E[Xi | X]
 E[Xi | X] is a random variable: E[Xi | X](ω) = E[Xi | X=X(ω)]

– For simulations with distinct X values, E[Xi | X] = Xi 
– Part of algorithm for linear natural allocation 

 Reduces multi-dimensional problem to one dimension, a great simplification 

 Linear natural allocation to Xi and E[Xi | X] are equal

NA(Xi) = E[Xi g'S(X)] = E[E[Xi g'S(X) | X]] = E[E[Xi | X] g'S(X)] = NA(E[Xi | X])
since g'S(X) is a function of X (linear natural allocation)

 ρ(E[Xi | X]) ≤ ρ(Xi) since E[Xi | X] is less risky than Xi

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
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Interpretation of Natural Allocation
 The natural allocation is the difference of two standalone premiums, each with 

a positive margin

 For each Xi, can write* E[Xi | X] = Ins – Fin for two risks comonotonic with X
NA(Xi) = E[Xi g'S(X)] = E[E[Xi | X] g'S(X)] 

= E[Ins g'S(X)] – E[Fin g'S(X)] = ρ(Ins) – ρ(Fin)
– Ins is the pure insurance part of Xi

– Fin is the pure financing part, so-called since –Fin is anticomonotonic to X

 Natural allocation margin is the net effect of two positive margins 
NA(Xi) – E[Xi] = (ρ(Ins) – E[Ins]) – (ρ(Fin) – E[Fin]) 

positive insurance margin financing credit
* Can usually write, terms and conditions apply
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Interpretation of Natural Allocation
 Natural allocation margin depends on ρ’s risk aversion in the insurance and 

financing parts of Xi

 If the financing part appears in the tail, which is usually does for a thin tail line 
pooled with thick, then the more tail-centric the distortion the greater the 
financing credit and lower the net margin 

 Management may not want to credit underwriters for a capital benefit 
incidentally present in insurance policies

 As alternatives, could charge 
– ρ(Ins) – E[Fin]  and ignore financing margin credit 
– ρ(E[Xi | X]) ≥ NA(Xi) to give credit for pooling benefit but not financing 
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Decomposing the Natural Allocation (dual distortion) 

 E[Xi | X] = Ins – Fin split into insurance and 
financing parts 

 Insurance margin = 40.0 – 37.1 = 2.9
 Financing credit = 7.7 – 5.4 = 2.3
 Net margin 2.9 – 2.3 = 0.6
 Net NA margin = 32.3 – 31.7 = 0.6

Left plot. Blue line shows 
E[X1 | X], which is not 
comonotonic with X, the 
diagonal. Its natural allocation 
has a financing credit 
component. 
E[X2 | X], orange, is 
comonotonic with X. It is a 
pure insurance risk with no 
financing credit component.  

Right plot shows the same 
thing for the two financing 
cash flows: reinsurance X4 
and equity X3. Both are 
anticomonotonic with X 
meaning they are pure 
financing.
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Ins and Fin parts for X1, non-cat losses
 Ins and Fin both increase with X

 Financing effect evident where 
Fin non-zero only in the tail for 
X ≥ 40

 Large financing loss at X=65 
makes Fin especially valuable 
to tail-centric distortions
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Alternatives to the Natural Allocation

 Above: margins by distortion by unit or 
grouping; gross and financing margins offset

 Right: Alternatives to the natural allocation 
– Standalone pricing, ρ(Xi)
– Projected standalone, ρ(E[Xi | X])
– Decompose into pure insurance margin (Ins) 

and pure financing credit (Fin) and omit 
financing credit 

– X2 is pure insurance, so Fin margin = 0
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Contact Information and Resources

Stephen Mildenhall
Cell: +44.73.9393.8601
steve.mildenhall@qualrisk.com
steve@convexrisk.com
Stephen J Mildenhall | LinkedIn

pricinginsurancerisk.com 
 Case study exhibits 
 Supplemental exhibits
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Software documentation
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Code

https://www.github.com/
mynl.aggregate

Biography

Stephen Mildenhall is an FCAS with a 
distinguished 30-year career in insurance and 
academia. He leads Analytics at QualRisk, 
focusing on risk and capital optimization in 
insurance and financial services. Previously, he 
was an Assistant Professor at St. John’s 
University, New York, and held leadership 
positions at Aon, including Global CEO of 
Analytics and head of Aon Reinsurance 
Analytics. His career began in pricing at 
Kemper Insurance and CNA, focusing on 
personal, commercial, and reinsurance lines. 
At QualRisk, he continues to engage in 
bespoke consulting projects, while also 
programming the aggregate Python package 
and contributing to the literature in his field.

https://creativecommons.org/licenses/by/4.0?ref=chooser-v1
mailto:steve.mildenhall@qualrisk.com
mailto:steve@convexrisk.com
https://www.linkedin.com/in/stephen-j-mildenhall-3180b0b1/
http://www.pricinginsurancerisk.com/
https://aggregate.readthedocs.io/en/latest/
https://aggregate.readthedocs.io/en/latest/
https://www.github.com/mynl.aggregate
https://www.github.com/mynl.aggregate


49Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 International

Appendix:

Details of Reinsurance Cash Flows
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Explanation of Reinsurance Cash Flow
 Reinsurers quote premium P 

required to pay ceded losses L

 For a collateralized 35 xs 65 layer
– Ceded premium P ↔ pay 35 – P 

for return of collateral
– Ceded loss L ↔ return 35 – L
– Equivalent to standard 

reinsurance plus a risk-free loan 
of 35 from the reinsurer to the 
insurer at t=0 

– Compare cat bonds

Cash 
flow for 

Time t = 0 
(fixed)

Time t = 1 
(variable)

Insurance policy In: premium Out: losses

Bond In: principal Out: repayment 
& interest

Equity In: capital paid-
in

Out: entity 
residual value

Reinsurance Out: ceded 
premium

In: ceded losses

Alternative 
reinsurance

In: purchase 
return of 
collateral

Out: return of 
collateral

Want cash flows In / Out not Out / In
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